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We discuss non-axisymmetric instability of a thin cylindrical sheet of a gas which 
rotates concentrically with a rigidly rotating environment. For the sake of 
simplicity, we restrict ourselves to a linear single-mode analysis of a two- 
dimensional disturbance for which the axial component of the wavenumber 
vector vanishes. We further restrict ourselves to two limiting cases. In  case 1 the 
gas can be treated as incompressible, while in case 2 the effect of radial stratifi- 
cation caused by the centrifugal force is extremely strong. In  case 1 there are two 
unstable modes: a travelling and a stationary disturbance with respect to a system 
of co-ordinates which rotates with the environment. For each disturbance, we 
show the domains of instability on p vs. w diagrams, where p is the density and 
w is the angular velocity of the sheet non-dimensionalized with respect to those 
of the environment. A negative-viscosity phenomenon is also described. In  case 2 
both the travelling and the stationary disturbances are stabilized by the strong 
radial stratification. An outline of a WKB method of approximation is given. 

1. Introduction and summary 
In  their study of instability of swirling flow, Howard & Gupta (1962) described 

many interesting aspects, including a semicircle theorem. They did not discuss 
cases in which there are discontinuities in the flow, because instability is then 
automatically expected. Followers of their study also disregarded discontinuous 
configurations (see, for example, Pedley 1968,1969; Maslowe 1974; Gans 1975). 

Discontinuities in the angular velocity in a rotating fluid are smoothed out by 
Stewartson layers. The instability of Stewartson layers poses interesting prob- 
lems, which are not included in the theory of continuous flows. Thus Busse 
(1 968)’ Siegmann (1 974) and Hashimoto (1 976) discussed the instability of 
Stewartson layers in relation to Hide & Titman’s (1967) experiment. I f  there are 
two discontinuities in the angular velocity, as for a cylindrical sheet in a rotating 
fluid, other interesting phenomena appear. This kind of cylindrical sheet in 
a rotating fluid occurs in gas centrifuges used for the enrichment of uranium. 

Let us consider a gas centrifuge in which the operating gas is fed in through 
a narrow circular slit in the lid. As for steady flows (see, for example, Matsuda, 
Sakurai & Takeda 1975; Nakayama & Usui 1974; Hashimoto 1975), half of this 
gas forms a thin cylindrical sheet with the slit as its top cross-section. In  these 
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FIGURE 1. Possible interaction between the sheet and the environment. (u) Schematic 
diagram of non-axisymmetric two-dimensional disturbance on the sheet. Regions 1 , 3  and 2 
are the inner and the outer parts of the environment and the sheet, respectively. In  this 
figure the sheet is assumed not to rotate. A part A of the sheet has moved outwards and is 
being squeezed by a high pressure a t  its new location. ( b )  The variation of the pressure of 
the inner and outer environment on the interfaces estimated by linear extrapolation or 
interpolation of the basic pressure. (In both parts of the figure points 1 , l ’  and 3,3’ designate 
the original and the new locations of the inner and the outer interfaces of part A respec- 
tively.) The resultant pressure of the environment a t  the new location of part A is clearly 
in the outward direction. This causes further outward motion of part A .  

treatments, differences between the density and angular velocity of the gas fed 
in and the gas which occupies the rest of the centrifuge, respectively, are assumed 
to be infinitesimally small. I n  practice, this assumption is violated to a consider- 
able extent. In  such circumstances many kinds of instability are excited, as was 
expected by Howard & Gupta (1962). For example, Rayleigh-Taylor instability 
is excited owing to the density discontinuity if the wavelength of the disturbance 
is small in comparison with the thickness of the sheet, since the sheet can then 
be considered to be of infinite thickness. However this is not the case if the 
wavelength of the disturbance is large in comparison with the thickness of the 
sheet. Figure 1 gives a schematic representation of such a disturbance. If  the 
density in the inner region 1 were larger than that in the outer region 3, the 
potential energy of the system would be decreased by this disturbance. This loss 
of potential energy would then be transformed into kinetic energy of the dis- 
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turbance. This is the mechanism by which the Rayleigh-Taylor instability is 
excited. In  the present case, this mechanism does not operate because the inner 
and the outer densities are equal. The augmentation of the disturbance depends 
in this case upon a subtle interaction between the sheet and the environment. 
To illustrate a possible interaction, let us consider part A of the sheet, which is 
displaced outwards by the disturbance. For the sake of definiteness, we assume 
that the sheet does not rotate. Eecause of the high pressure at  its new location, 
part A is squeezed and its thickness is decreased. I f  the environmental pressure 
is estimated by linear extrapolation or interpolation of the basic pressure, this 
decrease in the thickness leads to an outward resultant pressure on part A (see 
figure 1 b) .  This outward pressure causes further outward motion of part A. 
Augmentation of the inward displacement of part B can be conjectured similarly. 

By the way, the squeezing of part A forces gas out of that part of the sheet. 
This motion, however, is obstructed by the centrifugal force if the sheet rotates. 
A disturbance pressure related to the gas motion which causes the displacement 
itself may compensate for the change in the basic pressure. We have neglected 
these counteracting effects in the above illustrative example. The best way to 
include all these effects is to treat the problem analytically. This is the purpose 
of this paper. 

As is suggested by the above illustration, the predominant effect is interaction 
between the sheet and the environment as a two-dimensional configuration. 
Axial motion of the sheet seems to have a minor influence. This corresponds to 
practical cases, because the height of a centrifuge is large in comparison with its 
radius. It is also reasonable to expect that the axial component of the sheet 
velocity will be small in comparison with the azimuthal component for a gas 
centrifuge, so we assume that the axial component vanishes. For the sake of 
simplicity, we neglect the top and the bottom end plates and assume that the 
axial component of the wavenumber vector vanishes. We also neglect the vis- 
cosity and the thermal conductivity of the gas. The effect of the side walls is 
neglected whenever this simplifies the treatment. 

Summarizing the above statements, we formulate our problem as follows. 
A thin cylindrical sheet of inviscid non-conducting gas rotates rigidly in and 
concentrically with a rigidly rotating environment. The environment is also 
inviscid and non-conducting and its angular velocity is different from that of the 
sheet. The axial components of the velocities of the sheet and the environment 
both vanish. In  this basic state of equilibrium, the centrifugal force is balanced 
by the pressure. A small amplitude disturbance, the axial component of whose 
wavenumber vector vanishes, is superposed on this equilibrium state. Our 
problem is to study analytically whether or not this disturbance grows. For the 
sake of simplicity, we restrict ourselves to two limiting cases. In  case 1, the 
operating gas is treated as incompressible, the densities of the sheet and the 
environment are prescribed and the side walls are neglected. In  case 2, the effect 
of the radial density stratification is extremely strong. This situation corresponds 
to  the operating conditions for gas centrifuges used for the enrichment of uranium. 
Also, the sheet and the environment are individually isothermal, and the side 
walls are taken into account for the sake of definiteness. 
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FIGURE 2. Domains of instability of the stationary disturbance with m = 1. The restriction to 
this value of m is based on the fact that this disturbance is the most stable and its domains 
of instability give us the union of those corresponding to other (stationary) disturbances. 
The signs of angular-momentum transfer to the sheet via the disturbance are also shown, 
a plus sign meaning that the sheet is accelerated. Trends of induced changes in the angular 
velocity of the sheet ar0 indicated by arrows. Dashed lines are boundaries on which the 
angular-momentum transfer changes sign. As explained in the text, this is the line to which 
the angular velocity of the sheet tends asymptotically. 

Before describing the mathematical details, we want to summarize the results. 
In  case 1, the analysis is simple, and we give it in full detail in $$2 and 3. We show 
that there are two kinds of unstable disturbance: one travelling and the other 
stationary with respect to a system of co-ordinates which rotates with the 
environment. As we shall show in 93, all the disturbances are unstable if the 
disturbance with m = 1 is unstable, where the integer m is the azimuthal com- 
ponent of the wavenumber vector. Figures 2 and 3 show the domains of in- 
stability on p vs. w diagrams of this disturbance, where p and w are respectively 
the density and angular velocity of the sheet non-dimensionalized with respect 
to those of the environment. In  these figures we give the directions of angular- 
momentum transfer via the disturbance, a plus sign corresponding to acceleration 
of the rotation of the sheet. 

It should be noted that there are domains of instability in the immediate 
neighbourhood of the point ( 1 , l ) .  This point corresponds to a uniform con- 
figuration. Therefore sheet instability can appear when the basic state of rotation 
is only very slightly non-uniform. 

To see another interesting aspect, let us consider the evolution of a state of 



Instability of a rotating sheet of gas 51 7 

Unstable 

w 

FIGURE 3. Domains of instability of the travelling disturbance with m = 1. The format of 
the representation is the same as that in figure 2. The interesting thing here is that the sheet 
tends t o  stop rotating in region S because of the angular-momentum transfer via the 
disturbance. It is also interesting that in region P the sheet is accelerated until its angular 
velocity reaches that on the right boundary of the region. 

given p according to figure 2. Region A of this figure is labelled by a plus sign, 
which corresponds to acceleration of the sheet by angular-momentum transfer 
via the disturbance. Thus a state of given p moves to the right in this region until 
a dashed line on the diagram is reached. This line is a boundary on which the 
angular-momentum transfer changes sign. Similarly, a, state in region D of 
figure 2 moves to the left and approaches the same dashed line. Points on this 
dashed line therefore correspond to an asymptotic state to which the angular 
velocity of a sheet with a prescribed density tends. Other asymptotic states are 
indicated by the other dashedlines in figures 2 and 3. In particular, the asymptotic 
state to which states in region S in figure 3 tend is a state of no rotation of the 
sheet. The asymptotic state corresponding to  region 3’ in figure 3 is the right 
boundary of the domain. In region A in figure 2, the disturbance augments the 
angular-velocity difference between the sheet and the environment. This ten- 
dency is in contrast to tha t  of the viscosity, which acts to diminish the difference 
in velocity. This tendency is a manifestation of the negative-viscosity phenom- 
ena familiar in meteorology (Starr 1968). 

In case 2, a WKB method of approximation similar to that applied to the; 
baroclinic-type instability in a gas centrifuge (Sakurai 1975) is applied. Because 
the analysis is tedious though straightforward, we shall merely give an outline 
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of it in $4. The result is that both travelling and stationary disturbances are 
stabilized by strong radial stratification caused by the centrifugal force. As far 
as sheet instability is concerned, this result may be favourable for gas centrifuges 
used for the enrichment of uranium. 

Finally, it  should be noted that the exact locations of the asymptotic states 
mentioned above must be determined by a nonlinear treatment. Coupling 
between modes may play an important role. The contrasting results for cases 
1 and 2 also make it natural to inquire about the situation in an intermediate 
case. These problems are, however, out’side the scope of the present treatment. 

2. Basic equations 
In this section, we restrict ourselves to case 1, because extension of the 

procedure used here to case 2 is straightforward. The latter will be discussed 
briefly in $4. 

We use a system of cylindrical co-ordinates which rotates with the environ- 
ment. We define the following non-dimensional variables : 

!r = !F/?,, z = zp,, f$ = $IT-G,€, t = G o t , )  

P = (17-pofi ,2~,2PB)/(&Po~; G), I 
where (F, $,2) is a system of cylindrical co-ordinates at  rest, i the time, (&, i&, ijE) 
the velocity components with respect to the co-ordinates (r,  9, z) ,  ji the pressure, 
p” the density, Po the environment density, 9, the angular velocity of the environ- 
ment, F, the radius of the inner boundary of the sheet and E a small parameter. 
Also, a suffix B refers to the basic state of equilibrium and tildes to the original 
physical (dimensional) quantities. 

In  the basic state of equilibrium, the centrifugal force is balanced by the 
pressure : 

where p = PIPo and w = GIGo, i.e. p = w = 1 in the environment (regions 1 and 3 
in figure 1). Integration of (2) with respect to r from origin gives 

dpB/dr = p r d ,  ( 2 )  

po++r2 for 0 < r  6 1, 

p B  = p o + ~ + ~ p l w ~ ( r 2 - - 1 )  for 1 6 r < l + A r ,  ] (3) { po  + 4 + &plw:{(l + Ar)2- 1} + +{r2- (1 + Ar)2} for 1 +Ar < r, 

where po is the basic pressure at the origin and Ar is the thickness of the sheet. 
Substitution of (1) into the basic equations of motion and neglect of terms of 

order €2 gives the basic equations for the disturbance: 

o = a(ur)/ar+av/af$, (4) 
au au 1 aP -+((W-l)--2wv = ---, 
at w P ar 

av av 1 aP -+((W-l)-++wu = --- 
at af$ Pr a$ * 
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In  the derivation of the above equations we have used our assumption that the 
axial component of the wavenumber vector vanishes, i.e. that physical quantities 
do not depend on x.  

The linearized boundary conditions on the inner and the outer interfaces of 
the sheet are 

u1 = - afi af i afi  
at > 

2% = - at + ( W -  1)-  ( 7 )  

on r = 1 and 

Pa = P 3 + ( ~ - P W 2 ) 1 ~ + W f 0  (10) 

on r = 1 + Ar, where the suffixes 1,  3 and 2 refer to the inner and the outer parts 
of the environment and to the sheet, respectively, and fi and fo describe dis- 
placements of the interfaces, i.e. 

In  the above boundary conditions, (7)  and (9) state that a fluid particle on the 
interface moves with the interface, while (8) and (10) state the continuity of the 
pressure across the interface. Finally, physical quantities must be finite both 
at  the origin and at  infinity (i.e. r = co). 

3. Solution of the basic equations 

quantities may be expressed as 
Following the usual procedure in stability analysis, we assume that physical 

q = q(r)  exp {i(m# + at)}. (13) 

Because of the single-valuedness of physical quantities, m must be an integer. 
Substitution of (13) into (4)-(6) gives 

where 
a, = o + m ( w - 1 ) .  

Solutions of (16) satisfying the boundary conditions at  the origin and at  infinity 
are 

p l  = A,rm, pa  = A2r*+Bar-m, p3 = B3rm.  (18)-(20) 
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Substitution of these solutions into boundary conditions (7)-( 10) g‘ ives us 
a system of six linear homogeneous algebraic equations for six unknowns: 
A,, A,, B,, B3, fi and f,. Non-trivial solutions can be obtained only whenthe 
determinant of the coefficients vanishes. This condition gives us the dispersion 
eauation 

( I + A Y ) ~ ~ - I  
0 = ((r4 - 4w2) &; - [ 2p{( l  I}’]’ 

or g = { 2 g - m ( i  -po2)}{2a-m(1 - p w 2 ) - 4 ~ w c r l } - ( r 4 - p 2 a ; ( ~ ~ - 4 w 2 ) .  (22)  

fT1 = * 2 w .  (23) 

We are not interested in these solutions, however, because they correspond to 
a disturbance which does not grow. Our interest is restricted to the zeros of the 
term in square brackets in (21) .  Because the sheet is thin, Ar is small in comparison 
with unity. In  this case, the solutions can be classified into travelling and 
stationary disturbances with respect to our rotating system of co-ordinates. For 
a stationary disturbance, the root is expressed as 

Two obvious solutions of (21)  are 

(T2 = Ago/(w- I),, (24)  

where go = ( i -p~2)2+4pw(w-i)( i -pw)-mzpz(w- 114, (25 )  

A = {(I +Ar)Zm-- 1}/ [2p{( l  +Ar)2m+ I}]. (26)  

The solution of (24 )  is either real or purely imaginary. Therefore this disturbance 
does not propagate when it is unstable. This is why we call it stationary. All 
the disturbances of this kind become unstable if the disturbance with m = 1 is 
unstable. That is to say, the domains of instability on a p us. w diagram of the 
(stationary) disturbance with m = 1 constitute the union of the domains of 
instability for all the (stationary) disturbances. We are interested in this union 
and put m equal to unity in (24) .  This gives us 

go = - (p - I )  [{2(6J - - I} p + I]. (27)  

The domains of instability in figure 2 are those in which go is negative. Travelling 
disturbances are treated by a similar procedure, and have 

u2 - Aid2 , ( P - A )  ( P - 7 ) .  
- 4(w- 1) 

The domains of instability, in which (T, becomes purely imaginary, are given in 
figure 3. 

Let us next consider the angular-momentum transfer to the sheet via the 
disturbance excited by the above instability. Integration of the azimuthal com- 
ponent of the equations of motion gives us 

We can calculate u and v here by taking the real part of the expressions obtained 
for them above. We restrict ourselves to the case m = 1 in this procedure. Substi- 
tution of these values into (29)  gives us an expression for the angular-momentum 
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transfer. Because the calculations are lengthy though straightforward, we give 
the results only. For the stationary disturbance, the sign of the angular- 
momentum transfer is determined by the sign of the following expression: 

- (P- 1) I -  , - ( W - l ) ( p W ( W - 2 ) + 1 } '  

The analogous expression for the travelling disturbance is 

1, = - ( p  - 1) (W - 1) ( Z ~ W ' ( W  - 2 )  + 2w3 - 8 ~ '  + 1 2 ~  - 4). (31) 

The signs of these expressions are given in figures 2 and 3. 

4. Stabilization of the instability by strong radial stratification caused 
by the centrifugal force 

As has been discussed by many authors (see, for example, Sakurai & Matsuda 
1974; Matsuda et al. 1975; Nakayama & Usui 1974), the effect of strong radial 
stratification caused by the centrifugal force is important in gas centrifuges 
used for the enrichment of uranium. As we stated in $1,  both the travelling 
and the stationary disturbances are stabilized by an extremely strong stratifica- 
tion. Because the analysis in this case is lengthy though straightforward, we 
give merely an outline of the treatment, for the sake of brevity. 

In  the case of a compressible fluid, the density and the temperature must be 
treated as dependent variables in addition to those for an incompressible fluid. 
Instead of prescribing densities in the sheet and the environment, we prescribe 
temperatures in these regions, assuming that both regions are basically iso- 
thermal. The non-dimensionalization and the linearization of the basic equations 
are similar to those in $2.  For the sake of definiteness, we assume the existence 
of side walls. The boundary conditions on these side walls are 

u = 0 on r = rl ,r3,  (32) 

where rl and r3 are the non-dimensional radii of the inner and outer side walls 
respectively. 

The pressure distribution in the basic state of equiIibrium is as foIlows: 

(SyMir2 for rl < r < 1 ,  

+ r 2 - ( l + A r ) 2 ]  for l + A r  < r < r3, (36 )  

where M i  = 6ii$/(yRP0), y is the ratio of the specific heats, R the gas constant, 
5?,, the temperature of the environment and T, the non-dimensionalized tempera- 
ture of the sheet. Boundary conditions (7) and (9) can be used as they are, while 
(8) and (10) are replaced by 

~ , + y M ~ f ~ ( l - ~ 2 / T , ) ~ ~ ( r  = 1 )  on r = 1 ,  (36) 
3 + y l M ~ f ~ ( l - ~ 2 / T , ) ( 1 + A r ) ~ B ( r =  1+Ar)  on r = l + A r .  (37) 
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Substituting non-dimensional variables similar to those in (I), taking into 
account the above basic pressure, neglecting terms of order e2, and performing 
simple calculations, we obtain 

T = (y  - 1) {p - iura,/a;}, 

p = y p  - iGra,(y - i)/cTl, 
- 

In  the derivation of the above equations, we have assumed representations of 
physical quantities of the form (13) except for p and p, which are represented as 

Substitution of the above relations into the radial component of the equations 
of motion gives us 

fl+$I2 = {47[(t+p0)}-~ [ 7 2 ~ ~ ~ 4 + f 2 y ~ 0 { 8 - 2 ~ ~ / ~ 2 + 4 ( 7 - 2 )  "1 

+ (y2 - 27 + 2) a:} t3 + y2{ - 1 6a1+ 4( 6 - 7) 
+ (2 a!} t2 + 4y2po{4- 4a1 (2 - 7) a:} [ 1272/3i], (44) 

- 8( 2 - 7) 

where we have used the following transformations motivated by the WBB 
method of approximation: 

(451, (46) 
- 
u = iu2ei, u2 = (+(5+,8,)-1exp (-*ao[). 

Corresponding to the case of extremely strong stratification caused by %he 
centrifugal force, we restrict ourselves to a large value of lW0 and assume 

v = Mtli7, 5 N 1 (47) 

to  analyse stationary disturbances. Introduction of the above assumptions and 
neglect of terms of order Mcl  gives us approximate versions of (44): 

$ I 2  = (iao)2{t+ (Y-2)2por-21/(5+Po) (48) 

for regions I and 3 and 

for region 2, where we have used the fact that 

$ I 2  = ( a ~ o ) 2  t2At + P o ) 2  

a0 Mi,  a, Mo, Po - 1 

in regions I and 3 and the fact that 

a, N M i ,  a, - I, Po N .Mi2 
in region 2. 

(49) 
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The solutions of (48) are 

and the suffix i refers to  regions 1 and 3. The solution of (49) is 

(53) 
- 54 
u2 = mo exp ( - 4.0 5) {a21 exp $2 + a22 exp ( - $,,I, 

(55) 
0 

a1 = - 
w -  1' 

( = r2-Po.  yM,2w2 To a0 = - To ' Po = M i ( w -  1)2' 

Solutions (50) and (53) each contain three unknown constants. Substitution of 
these solutions into the eight boundary conditions (7), (9), (32), (36) and (37) 
provides us with a system of eight linear homogeneous algebraic equations for 
the above six constants plusf, andf,,. Non-trivial solutions can be obtained only 
when the determinant of the coefficients vanishes. This gives us a dispersion 
equation from which cr may be determined. The calculations are lengthy though 
straightforward, and give us the folIowing approximate representation of the 
dispersion equation: 

(1 - a) m2/N; CT' = 1 - ( W ' G / ~ T ~ ) ~  AT,, (56) 

where G is a factor of order unity. In  the derivation of (56), we have used the 
smallness of Ar and the fact that the radial scale height is small in comparison 
with the radial distances from the sheet to the side walls. Because a < 1, cr is 
real for every value of w and To of order unity. 

Finally, to treat travelling disturbances, we assume 

nl = iY1Mi1, 5, - 1.  (57) 

The rest of the procedure is completely analogous to that for the stationary 
disturbances. The solution crl of the dispersion equation is again real for every 
value of w and To of order unity. This corresponds to stabilization of both the 
travelling and the stationary disturbances by the strong radial stratification 
caused by the centrifugal force. 

5. Concluding remarks 
In conclusion, let us examine the validity of our approximations. A standard 

gas centrifuge has radius 1Ocm and height 100cm and rotates at 40000 r.p.m. 
The circular slit in the lid has inner radius 6 cm and width 1 cm. The volume flux 
of operating gas through this slit is 20m3/min. The operating gas is uranium 
hexafluoride (UF,), whose gas constant is 2.36 x lo5 erg O C - l  mole-l. The tem- 
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perature of the gas is 50 "C and the sound velocity in it 90 m/s. The pressure at 
the boundary is kept at 100 mmHg at most in order to be safe from liquefaction 
of the UF6. The kinematic viscosity of UF, corresponding to these boundary 
conditions is 0.115. Finally, the ratio of specific heats is 1.06. 

On the basis of the above data, our parameters M2 and Ar are 8.3 and 0-17, 
respectively. Our restriction to cases with large M2 and small Ar is thus reason- 
able. Discontinuities in angular velocity and %emperatwe between the sheet and 
the environment are smoothed out by Stewartson Ei-  and Ea-layers. Of these, 
Et-layer on the inner interface is the thickest, its thickness being about 1 cm. 
Because this is of the same order of magnitude as the width of the sheet, our 
inviscid approximation in which interfaces are treated as discontinuities must be 
amended. Finally, the axial velocity corresponding to the above volume flux 
rate is 81.6 m/s. A fluid particle with this axial velocity travels from the top to 
the bottom in about 0.01 s. Because this is equal to eight rotation periods, which 
is small in comparison with the time scales discussed in 5 4, it is necessary to take 
into account the effect of the axial flow. 

Attempts to improve our present treatment according to the above discussion 
are outside the scope of this paper. 
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